Cilostazol Induces PGI2 Production via Activation of the Downstream Epac-1/Rap1 Signaling Cascade to Increase Intracellular Calcium by PLCε and to Activate p44/42 MAPK in Human Aortic Endothelial Cells

نویسندگان

  • Ayako Hashimoto
  • Michinori Tanaka
  • Satoshi Takeda
  • Hideki Ito
  • Keisuke Nagano
  • Magdalena Chrzanowska-Wodnicka
چکیده

BACKGROUND Cilostazol, a selective phosphodiesterase 3 (PDE3) inhibitor, is known as an anti-platelet drug and acts directly on platelets. Cilostazol has been shown to exhibit vascular protection in ischemic diseases. Although vascular endothelium-derived prostaglandin I2 (PGI2) plays an important role in vascular protection, it is unknown whether cilostazol directly stimulates PGI2 synthesis in endothelial cells. Here, we elucidate the mechanism of cilostazol-induced PGI2 stimulation in endothelial cells. METHODS AND RESULTS Human aortic endothelial cells (HAECs) were stimulated with cilostazol and PGI2 accumulation in the culture media was measured. Cilostazol increased PGI2 synthesis via the arachidonic acid pathway. Cilostazol-induced intracellular calcium also promoted PGI2 synthesis via the inositol 1,4,5-trisphosphate receptor. Using RNAi, silencing of PDE3B abolished the induction effect of cilostazol on PGI2 synthesis and intracellular cAMP accumulation. Inhibition of the exchange protein, which was directly activated by cyclic AMP 1 (Epac-1) and its downstream signal the Ras-like small GTPase (Rap-1), abolished cilostazol-induced PGI2 synthesis, but this did not take place via protein kinase A (PKA). Inhibition of downstream signaling, such as mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K) γ, and phospholipase C (PLC) ε, suppressed cilostazol-induced PGI2 synthesis. CONCLUSIONS The PDE3/Epac-1/Rap-1 signaling pathway plays an important role in cilostazol-induced PGI2 synthesis. Namely, stimulation of HAECs with cilostazol induces intracellular calcium elevation via the Rap-1/PLCε/IP3 pathway, along with MAPK activation via direct activation by Epac-1/Rap-1 and indirect activation by Epac-1/Rap-1/PI3Kγ, resulting in synergistically induced PGI2 synthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phospholipase Cε Modulates Rap1 Activity and the Endothelial Barrier

The phosphoinositide-specific phospholipase C, PLCε, is a unique signaling protein with known roles in regulating cardiac myocyte growth, astrocyte inflammatory signaling, and tumor formation. PLCε is also expressed in endothelial cells, however its role in endothelial regulation is not fully established. We show that endothelial cells of multiple origins, including human pulmonary artery (HPAE...

متن کامل

VGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells

Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...

متن کامل

Inactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes

Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...

متن کامل

Aldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells

Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...

متن کامل

CD45 inhibits CD40L-induced microglial activation via negative regulation of the Src/p44/42 MAPK pathway.

It has been reported that ligation of CD40 with CD40 ligand (CD40L) results in microglial activation as evidenced by p44/42 mitogen-activated protein kinase (MAPK) dependent tumor necrosis factor alpha (TNF-alpha) production. Previous studies have shown that CD45, a functional transmembrane protein-tyrosine phosphatase, is constitutively expressed at moderate levels on microglial cells and this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015